

Welcome to MiniContourFinder’s documentation!

	Getting started
	Installing
	pip install

	Conda install

	GitHub install

	Verifying your installation

	Uninstalling
	Uninstalling with pip

	Uninstalling with conda

	Uninstalling GitHub install

	Using the GUI
	Segmenting your first image

	Saving and loading contours

	Additional features
	Contour approximations

	Adding a scale bar

	Understanding the parameters

	Literature cited

	Using the CLI

Getting started

Installing

Trying to install bioinformatics software can often lead to headaches, so I’ve dedicated a lot of time to making MiniContourFinder easy to install regardless of operating system. However, installing and using MiniContourFinder requires basic knowledge of the command line and either of the common package manager pip [https://pip.pypa.io/en/stable/#] or conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html].

pip install

Currently, the easiest way to install MiniContourFinder is with pip. Chances are that you already have pip installed because it comes prepackaged with Python (at least since v3.4/v2.7.9). To check if pip is installed, open up a terminal and check if the following outputs look similar.

$ python --version
Python 3.N.N
$ python -m pip --version
pip X.Y.Y from ... (python 3.N.N)

If your default version of Python is 2.N.N instead of 3.N.N, try the same commands, but with python3 instead of python, and pip3 instead of pip. If that didn’t work, follow the installation guide here [https://pip.pypa.io/en/stable/installation/].

If it did, you can now install MiniContourFinder simply by running

$ pip install MiniContourFinder

It will produce an output detailing the requirements that were already satisfied and that were missing (and installed along with MiniContourFinder)

Collecting MiniContourFinder
 Downloading MiniContourFinder-1.0.14-py3-none-any.whl (47 kB)
 |████████████████████████████████| 47 kB 3.9 MB/s
...
Installing collected packages: MiniContourFinder...

Successfully installed MiniContourFinder-1.0.14...

Attention

ModuleNotFoundError: No module named 'Image'

There are well documented [https://stackoverflow.com/questions/26505958/why-cant-python-import-image-from-pil] problems installing the module Image from PIL, pillow, or Pillow. If pip begins to install MiniContourFinder, but it exits with a ModuleNotFoundError that looks similar to

ModuleNotFoundError: No module named 'Image'
--
ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.

then you’ll have to install Pillow yourself with pip before installing MiniContourFinder.

$ pip install Pillow
$ pip install MiniContourFinder

Conda install

I’ve also published MiniContourFinder on Anaconda, here [https://anaconda.org/iangilman/minicontourfinder], but the install isn’t functional yet. In the future, conda will be the prefered installation platform. To check if conda is already installed, you can enter conda info in a terminal, which should print information about your installation.

If conda is not installed, you can install it easily through a download, here [https://docs.anaconda.com/anaconda/install/], or use the command line, which I prefer and outline below. conda comes in either Anaconda, or Miniconda; the difference between the two being that Anaconda comes with loads of things preinstalled, while Miniconda is more bare bones. I prefer Miniconder, and will show an example macOS install below, but you read more about the differences here [https://docs.conda.io/projects/conda/en/latest/user-guide/index.html].

First, copy the repsective 64-bit install link [https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links] from the conda docs for your operating system (note that for macOS you want the “bash”, not “pkg” version). Open a terminal and run

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

That’s a capital “o”, not a zero. This will download the installer. Next, run the installed with

$ bash Miniconda3-latest-MacOSX-x86_64.sh

After following all the prompts and reading the license you should have conda installed! The last thing to do is “restart” your terminal so that is recognizes conda. This can be done by quiting and reopening your terminal, or with the following

$ source ~/.bash_profile

Now when you type conda info in your terminal you should return the installation info.

GitHub install

MiniContourFinder can be installed by cloning the GitHub repo [https://github.com/isgilman/MiniContourFinder].

$ git clone https://github.com/isgilman/MiniContourFinder
$ cd MiniContourFinder
$ python setup.py install

Verifying your installation

I haven’t gotten around to writing install tests yet, but you can check to see that your install is working by typing

$ mcf -h

which should bring up the help info.

Uninstalling

Uninstalling with pip

Uninstalling with pip is just as easy. My version lives in a directory called junkdrawer.

$ pip uninstall MiniContourFinder
Found existing installation: MiniContourFinder 1.0.14
Uninstalling MiniContourFinder-1.0.14:
 Would remove:
 junkdrawer/bin/mcf
 junkdrawer/bin/mcf_gui
 junkdrawer/bin/mcf_parallel
 junkdrawer/lib/python3.8/site-packages/MCF/*
 junkdrawer/lib/python3.8/site-packages/MiniContourFinder-1.0.14.dist-info/*

Then enter y or Y at the prompt.

Proceed (Y/n)? y
 Successfully uninstalled MiniContourFinder-1.0.14

Uninstalling with conda

Uninstalling GitHub install

If you installed MiniContourFinder from the GitHub repo, you can uninstall it with pip, as above.

$ pip uninstall MiniContourFinder

After that finished, navigate to the directory you downloaded the repo to, and delete it. My installation lives in junkdrawer.

$ cd junkdrawer
$ rm -r MiniContourFinder

Using the GUI

MiniContourFinder, and the GUI in particular, were designed with the idea that the user need not understand the image processing steps under the hood to produce great image segmentations. I’ll briefly review the image operations at the end of this section, but they aren’t necessary to get going.

Segmenting your first image

I’ll be working with a cross sectional image of the stem of an Alluaudia dumosa called Alluaudia_dumosa.png. You can follow along by using the same image, which is included in the test data installed with MiniContourFinder, and available on in the repo here [https://github.com/isgilman/MiniContourFinder/blob/master/tests/Alluaudia_dumosa.png]. Getting started with the GUI is as easy as

$ mcf-gui Alluaudia_dumosa.png

A message about image denoising should appear in the terminal, followed by a window like the one below. In an effort to reduce the start-up time for users working with the same image, a denoised image is created in the working directory (*.denoise.png). You can safely delete this file anytime, but it will save you time when reanalyzing an image, especially when working with images over 50Mb.

Warning

The MiniContourFinder GUI performs better on smaller images, and will be slow to react when working with images over 75Mb. If you’d like to segment large images, I suggest refining parameters on a section of the image and then feeding those parameters through the command line interface. See more here.

[image: _images/AD_GUI_init.png]
The blue lines in the image are the current contours, which you can tweak by moving the sliders. It can be difficult to see the blue contours against the blue-stained image. You can zoom in and out using cmd + + and cmd + -, respectively, and you can change the color of the contours by clicking “Contour color”. You can also choose minimum and maximum contour sizes to get ride of unwanted contours that are often capturing dust on a microscope slide or enclose the entire image.

[image: _images/AD_GUI_pink_setArea.png]
You can see that we’ve lost many unwanted small contours, but we’ve also lost many contours that initially looked good because they were not completely separated from one another. A few quick adjustments of the sliders and refinements of the minimum and maximum area produce a very clean segmentation.

[image: _images/AD_GUI_good_segments.png]
Now we’re ready to select some of these contour for inclusion in our final data set. The default color for selected contours is magenta, so I first changed my selected color to green using the “Selected color” button. Then I added contours by checking the “Select contours” box in the lower left, and left-clicking individual contours, or group selecting multiple contours by left-clicking and dragging over an area. Contours can be removed in the same way, but by using right-click or right-click and drag.

[image: _images/AD_GUI_selection.gif]
You won’t be able to alter segmentation parameters while you’re selecting contours because all contours that you select are saved with their parameter metadata so that they can be reproduced easily. Not all areas of the image may be equally well segmented, so once you’ve selected all the contours that you like, you can uncheck “Select contours”, adjust parameters, and repeat.

Saving and loading contours

You can save the contours from MiniContourFinder by using the “Save” menu tab, or hitting cmd + s.

Note

You should enter a prefix at the save pop-up, not a full full file name with extention

MiniContourFinder will save four files:

	prefix.contour_data.csv a data frame in csv format containing, for each contour,

	a unique identifier (uuid4)

	the contour itself

	the parameter metadata when the contour was selected (C, kBlur, blocksize, kLaplacian, kDilate, kGradient, and kForeground)

	shape metrics (area in pixels, moment, minimum enclosing circle, minimum bounding box, aspect ratio, convex hull, convexity, solidity, and equivalent diameter)

	prefix.contour_data.json the same data as prefix.contour_data.csv in json format

	prefix.pdf an image of the selected contours over laid on the input image and annotated according to the prefix.contour_data.* files

	prefix.noindex.pdf an image of the selected contours ocer laid on the input image with no annotation

By default, MiniContourFinder will export the selected contours, if you haven’t selected any contours then it will export all current contours.

Tip

You can export all current contours by saving with no contours selected.

The csv is intended to be more human readable, but the json file is the one MiniContourFinder needs when loading contours. You can load contours using the “Open” menu tab, or with cmd + o. Opening contours will automatically put MiniContourFinder in selection mode and add the imported contours to the list of selected contours.

Additional features

Contour approximations

MiniContourFinder can apply two approximations that may be useful in certain contexts, approximate polygons and convex hulls. These can be useful when either the exact shape is not important, for example, when counting objects, or if the segments have straight or regular, rather than curved or irregular boundaries. I’ll use an image of a dragonfly wing [https://github.com/hoffmannjordan/insect-wing-venation-patterns/blob/master/ims/wing.png] from Jordan Hoffman that was part of Salcedo et al. (2019).

Here, by checking “Use convex hulls” we better approximate the dragonfly wing segments that were a little noisy.

[image: _images/DF_convex_hull.gif]
Approximate polygons are similar to convex hulls but allow the segments to be concave. By checking “Approximate polygons” and increasing epsilon, we approximate the contour by a polygon with fewer and fewer edges.

[image: _images/DF_approx_polys.gif]

Adding a scale bar

If your image contains a scale bar, you can use the “Detect scale bar” to automatically detect it. This works well with line-like scale bars, like in the image below.

[image: _images/Scalebar_detect.gif]
You can see in this case that MiniContourFinder correctly detected the scale bar (in green on the lower left) and read the units, all of which should update on the right hand panel once you interact with the GUI again. If detection isn’t working, which is often the case when scale bars are not distinct from the focal parts of the image, a scale bar can be drawn manually.

Note

All scale bars and measurements are relative to the original image size, regardless of how large the viewing window is.

[image: _images/Scalebar_draw.gif]
Alternatively, if you already know the conversion from pixels to another unit, that can be entered into the appropriate fields.

Tip

If MiniContourFinder is provided with conversion information and units it will convert pixel-based areas when exporting contour data.

Understanding the parameters

Segmentation in MiniContourFinder is accomplished through a combination of smoothing [https://docs.opencv.org/4.5.2/d4/d13/tutorial_py_filtering.html], thresholding [https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.html], and morphological operations [https://docs.opencv.org/4.5.2/d9/d61/tutorial_py_morphological_ops.html]. The image (A) is first denoised using non-local means (Buades et al. 2011), converted to grayscale, and undergoes adaptive histogram normalization to increase contrast (B). Then, the image is adaptively blurred to augment the contiguity of boundaries (C). Blurring is accomplished with a Gaussian filter over an area of k_blur x k_blur (\(k_{blur} \in 2\mathbb{N}+1\)) centered on a pixel. The pixel’s value is replaced with the Gaussian-weighted sum of its neighbors defined by the k_blur x k_blur surrounding area. Therefore, increasing k_blur reduces the effects of nearby pixels and increases the effects of far away pixels.

[image: _images/Figure-1a-c.pdf]
Similar to blurring, the threshold, Laplacian, dilation, gradient, and foreground operators are applied over a kernel of size k x k (\(k \in 2\mathbb{N}+1\)), where k determines the influence of pixels at different distances.

An adaptive Gaussian threshold is taken to further increase line contrast (D); in the case of thresholding, each pixels new value is given by the Gaussian-weighted sum of the blocksize x blocksize kernel, minus the constant C. Next, a Laplacian operator, which acts as a high pass filter, is applied to sharpen the edges in the image (E), and the image is dilated to expand boundaries (F). Dilating takes the value of a pixel to 1 if any pixel in the kernel is 1.

[image: _images/Figure-1d-f.pdf]
The gradient is taken to remove space within hollow contours (G), and the result is binarized (H).

[image: _images/Figure-1g-i.pdf]
Finally, the background (non-contour) is cleaned through morphological opening (erosion followed by dilation) (I) and closing (dilation followed by erosion) (J). Erosion is the opposite of dilation: the pixel is set to 0 if any other pixel in the kernal is 0. In an effort to only capture entire objects through segmentation, the image is flooded from the outside (K), which removes any partial shapes. Contours are then detected, with only the outermost contour returned in the case that contours are detected within one another (L).

[image: _images/Figure-1j-l.pdf]

Literature cited

	Buades, A., Coll, B. & Morel, J.-M. Non-Local Means Denoising. Image Processing On Line 1, 208–212 (2011).

	Mary K. Salcedo, Jordan Hoffmann, Seth Donoughe, L. Mahadevan; Computational analysis of size, shape and structure of insect wings. Biol Open 15 October 2019; 8 (10): bio040774. doi: https://doi.org/10.1242/bio.040774

Using the CLI

The MiniContourFinder GUI is great for images less than ~75Mb and for working with a few images at a time. If you’re working with large, high resolution images, or need to analyze dozens or hundreds of images, you’ll want to take advantage of the MiniContourFinder CLI.

You can pull up the help screen by opening up a terminal and running

$ mcf

or by adding the -h or --help flag.

 __ ___ _ _
 / |/ / (_) ___ (_)
 / /|_/ / / / / _ \ / /
/_/__/_/ /_/ /_//_//_/
 / ___/ ___ ___ / /_ ___ __ __ ____
/ /__ / _ \ / _ \/ __// _ \/ // / / __/
___/_____//_//_/__/ ___/_,_/ /_/
 / __/ (_) ___ ___/ / ___ ____
 / _/ / / / _ \/ _ / / -_) / __/
/_/ /_/ /_//_/_,_/ __/ /_/

usage: MCF.py [-h] [-i] [-o] [-p] [-D] [-d] [--debug DEBUG] [-n] [-kb] [-c]
 [-B] [-kl] [-kd] [-kg] [-kf] [-a] [-A]

optional arguments:
-h, --help show this help message and exit
-i , --input filepath to query image
-o , --output_dir path to output directory. Default='./'
-p , --prefix new prefix for output files. By default the new files
 will reflect the input file's basename
-D , --detectScaleBar
 automated scale bar detection. Default=False
-d , --dpi Output image resolution in pixels. Default=300
--debug DEBUG writes debugging information and plots more steps
-n , --neighborhood neighborhood size in pixels determining a unique
 contour. Default=10
-kb , --k_blur blur kernel size; must be odd. Default=9
-c , --C constant subtracted from mean during adaptive Gaussian
 smoothing. Default=3
-B , --blocksize neighborhood size for calculating adaptive Gaussian
 threshold; must be odd. Default=15
-kl , --k_laplacian Laplacian kernel size; must be odd. Default=5
-kd , --k_dilate dilation kernel size; must be odd. Default=5
-kg , --k_gradient gradient kernel size; must be odd. Default=3
-kf , --k_foreground
 Foregound clean up kernel size; must be odd. Default=7
-a , --Amin Minimum contour area in pixel
-A , --Amax Maximum contour area in pixels

Without some knowledge of what all these flags do, it can be difficult to get the segmentation right, which I why I recommend starting out with the GUI and migrating to the CLI once you’ve dialed in the parameter values.

In particular, once you’ve selected some parameters that you like, you can use the “Generate CLI parameters”, which copies the formatted parameter values to your clipboard so they can be pasted into a terminal.

[image: _images/CLI_params.gif]

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to MiniContourFinder’s documentation!

 		
 Getting started

 		
 Installing

 		
 pip install

 		
 Conda install

 		
 GitHub install

 		
 Verifying your installation

 		
 Uninstalling

 		
 Uninstalling with pip

 		
 Uninstalling with conda

 		
 Uninstalling GitHub install

 		
 Using the GUI

 		
 Segmenting your first image

 		
 Saving and loading contours

 		
 Additional features

 		
 Contour approximations

 		
 Adding a scale bar

 		
 Understanding the parameters

 		
 Literature cited

 		
 Using the CLI

_images/Scalebar_detect.gif
MCF - Test-images/2.2_10x.jpg

k_blur: 9

c:3

blocksize: 15

k_laplacian: 5

k_dilate: 5

K_gradient: 3

k_foreground: 7

Minimum contour area Enter

Maximum contour area

Pixels
Length

Clear scale Draw scale bar

Reset parameters.

Contour color Selected color Select contours

Contour thickness: 3

Approximate polygons (epsilon) | Use convex hulls.

_images/Scalebar_draw.gif
MCF - Test-images/2.2_10x.jpg

K_blur: 9
S|

blocksize: 15
k_laplacian: 5
K_dilate: 5
K_gradient: 3
k_foreground: 7

Minimum contour area Enter

B Maximum contour area Enter
Length in pixels Pixels
Length in units m
Set scale Detect scale Copy CLI parameters
Clear scale Draw scale bar Reset parameters
Contour color Selected color | Select contours

Y 7 . Coourthiciness:s
"~ Approximate polygons (epsilon) | Use convex hulls

e opsiond

_images/DF_approx_polys.gif
MCF - [Usersfiangilman/Downloads/wing.png

K_blur: 3
ci2)
k_laplacian: 3
k_dilate: 3
k_gradient: 5
k_foreground: 5
Minimum contour area Enter
5000 Enter

Length in pixels Pixels
Length in units Units
Set scale Detect scale Copy CLI parameters
Clear scale Draw scale bar Reset parameters
Contour color Selected color Select contours

Contour thickness: 6

Approximate polygons (epsilon) & Use convex hulls.

epsilon: 1

_images/DF_convex_hull.gif
MCF - [Usersfiangilman/Downloads/wing.png

k_blur: 3

c:2

blocksize: 37

k_laplacian: 3

k_dilate: 3

k_gradient: 5

- e TR
Minimurm contour area Enter
5000 Enter
Length in pixels Pixels.
Length in units Units

Set scale Detect scale Copy CLI parameters
Clear scale Draw scale bar Reset parameters
Contour color Selected color Select contours

Contour thickness: 6

Approximate polygons (epsilon) | Use convex hulls.

epsilon: 1

_static/file.png

_static/minus.png

_static/plus.png

_images/AD_GUI_pink_setArea.png
eeeeeeee

blocksize: 15

k_foreground: 7

EEEEE

EEEEE

LLLLLL

CCCCCCCCCCCCCCCCC

eeeeeeeeeeeeeee

eeeeeeeeeeeeee

Contour thickness: 3

_images/AD_GUI_selection.gif
MCF - tests/Alluaudia_dumosa.png

500

500000

Set scale

Clear scale

Contour color

Approximate polygons (epsilon)

T & MonAug 23 9:50:34

K blur: 11

Ci2

blocksize: 399

k_laplacian: 3

k_dilate: 3

k_gradient: 3

k_foreground: 5

Enter

Enter

Pixels

Length

Copy CLI parameters

Reset parameters.

Select contours

Contour thickness: 5

epsilon: 1

_images/AD_GUI_good_segments.png
[XON] MCF - tests/Alluaudia_dumosa.png

Save Open

k_blur: 11

C:2

blocksize: 399

k_laplacian: 3

k_dilate: 3

k_gradient: 3

k_foreground: 5

500 Enter
500000 Enter
Pixels
Length
Set scale Detect scale Copy CLI parameters
Clear scale Draw scale bar Reset parameters
Contour color Selected color Select contours

Contour thickness: 3

Approximate polygons (epsilon) Use convex hulls

#,
.'q' .'.“v..ﬂ

"A‘ ! X ; & epsilon: 1

L A)
.l
-

_images/AD_GUI_init.png
00 MCF - tests/Alluaudia_dumosa.png

Minimurm contour area
Maximum contour area
Length in pixels
Length in units
Set scale Detect scale
Clear scale Draw scale bar
Contour color Selected color

Approximate polygons (epsilon) | Use convex hulls

k_blur: 9
c:3
blocksize: 15
k_laplacian: 5
k_dilate: 5
k_gradient: 3
k_foreground: 7
Enter
Enter
Pixels
Length
Copy CLI parameters
Reset parameters
Select contours

Contour thickness: 3

episilon: 1

_images/CLI_params.gif
oo 0 MCF - tests/Alluaudia_dumosa.png

save open

k_blur: 3
c:25
blocksize: 15
k_laplacian: 7
k_dilate: 5
k_gradient: 3
k_foreground: 7
500 Enter
100000 Enter

Length Pixels

Length in units Length
Set scale Detect scale Copy CLI parameters
Clear scale Draw scale bar Reset parameters
Contour color Selected color Select contours
Contour thickness: 5

Approximate polygons (epsilon) | Use convex hulls

epsilon: 3

1310 GB -

$ [

&9 saoe wmi arox

